Molecular and Crystal Structure of Tris(acetonitrile)nitrosylbis(triphenylphosphine)rhodium(III) Dication as its Hexafluorophosphate Salt \dagger

Abstract

By Barbara A. Kelly, Alan J. Welch, " \ddagger and Peter Woodward, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Crystals of $\left[\mathrm{Rh}(\mathrm{NCMe})_{3}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ are monoclinic, space group $P 2_{1} / n$, with $a=14.053(8)$, $b=27.512(15), c=11.914(8) \AA, \beta=97.29(5)^{\circ}$, and $Z=4$. The structure has been elucidated by the analysis of 8502 observed intensities recorded at ca. 215 K on a four-circle diffractometer, and refined by least squares to $R 0.075$. In the cation the metal is octahedrally bound to trans-phosphorus atoms (mean Rh-P $2.405 \AA$) and three acetonitrile ligands [Rh-N $2.030(7), 2.104(7)$, and 2.308 (8) A], the last lying trans to the nitrosyl function [Rh-NO $2.026(8) \AA$] which acts as the one-electron donor [NO]-[Rh-N-O 118.4(6) ${ }^{\circ}$]. The two hexafluorophosphate counter ions exhibit differing thermal activity which is correlated to their crystal environments.

Recent synthetic work ${ }^{\mathbf{1}}$ by one of the groups of this department has yielded a model series of five-co-ordinate nitrosylrhodium dications $\left[\mathrm{Rh}(\mathrm{NCMe})_{4}(\mathrm{NO})\right]^{2+}(1)$, $[\mathrm{Rh}-$ $\left.(\mathrm{NCMe})_{2}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}(2)$, and $\left[\mathrm{Rh}(\mathrm{NO})(\mathrm{dppe})_{2}\right]^{2+}(3$; dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$. The $\left[\mathrm{RhL}_{4}\right]^{2+}$ fragment is a 15 -electron system, allowing either bent ($[\mathrm{NO}]^{-}, 1 \mathrm{e}$) or linear $\left([\mathrm{NO}]^{+}, 3\right.$ e) nitrosyl co-ordination to be envisaged; indeed, measurement of $\bar{v}\left({ }^{14} \mathrm{NO}\right)$ followed by empirical correction after the method of Haymore and Ibers ${ }^{2}$ suggested the former bonding mode for (1) and (2), the latter for (3).

We therefore undertook to unequivocally assign the nature of the nitrosyl co-ordination in these complexes via X-ray diffraction. Suitable crystals, thought to be of (2), were obtained as the hexafluorophosphate salt. The diffraction study, however, has subsequently revealed the presence of an additional co-ordinated acetonitrile ligand.

EXPERIMENTAL

The sample was prepared in an analogous manner ${ }^{1}$ to the $\left[\mathrm{BF}_{4}\right]^{-}$sait, and was recrystallised from acetonitrilediethyl ether as bright green transparent plates. On standing in air the crystals soon revert to powder, and since this could be interpreted as a possible indication of solvent weakly held in the lattice a freshly recrystallised specimen ($0.2 \times 0.2 \times 0.05 \mathrm{~mm}$) was mounted in a $0.5-\mathrm{mm}$ Lindemann capillary in an atmosphere of nitrogen-acetonitrilediethyl ether. The external crystal faces were $\{001\}$, $\{1 \overline{1} 0\}$, and $\{110\}$ and their inversion equivalents. Space group and initial cell dimensions were determined photographically.
The crystal was then transferred to a Syntex $P 2_{1}$ fourcircle autodiffractometer equipped with a ϕ-axis low-temperature device (N_{2} stream) and slowly cooled to $c a .215 \mathrm{~K}$.

[^0]Setting and data collection followed an established procedure. ${ }^{3} \quad 15$ Reflections, $14<2 \theta<26^{\circ}$, taken from a $30-\mathrm{m}$ rotation photograph, were centred in $2 \theta, \omega$, and χ and used to generate the real space vectors and intervector cosines by which the unit cell was chosen by inspection. The orientation matrix, cell dimensions, and associated errors were calculated by a least-squares fit. For data collection, $2.9 \leqslant 20 \leqslant 60.0$ using graphite-monochromated Mo- K_{α} X-radiation ($\lambda_{\alpha 1} 0.70926, \lambda_{\alpha 2} 0.71354 \AA$) and a $\theta-2 \theta$ scan in 96 steps. Peaks were scanned from 1.0° below $K_{\alpha 1}$ to 1.0° above $K_{\alpha 2}$ at speeds between 0.0425 and $0.4883^{\circ} \mathrm{s}^{-1}$, the precise rate being dependent on an initial 2 -s peak count in which 200.0 and 2000.0 were used as threshold counts. Three check reflections ($1 \overline{8} \overline{3}, \overline{4} 112$, and $50 \overline{1}$) were re-monitored once every 28 reflections, but subsequent analysis ${ }^{4}$ of their net counts as individual functions of time revealed no significant crystal decomposition or movement or source variance over the ca. 343-h X-ray exposure. Of 13432 independent reflections measured $(+h,+k, \pm l$ with equivalent $0 k l$ and $0 k l$ intensities afterwards merged), $9243 \mathrm{had} I \geqslant 1.0 \sigma(I)$ and were retained. No absorption correction was applied.
Crystal Data.- $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{Rh} \cdot 2 \mathrm{PF}_{6}, \quad M=1070.6$, Monoclinic, $a=14.053(8), b=27.512(15), c=11.914(8) \AA$, $\beta=97.29(5)^{\circ}, U=4569(5) \AA^{3}, D_{\mathrm{m}}$ not measured, $Z=4$, $D_{\mathrm{c}}=1.556 \mathrm{~g} \mathrm{~cm}^{-1}, F(000)=2160, \mu\left(\mathrm{Mo}-K_{\bar{\alpha}}\right)=6.0 \mathrm{~cm}^{-1}$, space group $P 2_{1} / n$ (alternative setting of $P 2_{1} / c, C_{2 h}^{5}$, no. 14).
Intensities were corrected for Lorentz and polarisation effects and the structure was solved by conventional Patterson (Rh) and iterative refinement-electron-density difference syntheses. Weights were applied according to $w^{-1}=x y$ with $x=F_{\mathrm{o}} / a$ if $F_{\mathrm{o}}>a, x=1$ if $F_{\mathrm{o}} \leqslant a, y=$ $b / \sin \theta$ if $\sin \theta<b$, or $y=1$ if $\sin \theta \geqslant b$, in which a and b took values of 70.0 and 0.3 respectively. Phenyl hydrogen atoms were introduced into calculated positions with $r(\mathrm{C}-\mathrm{H}) 1.0 \AA$ and $U_{\mathrm{H}} 0.05 \AA^{2}, \S$ and, although not themselves
${ }^{1}$ N. G. Connelly, M. Green, and T. A. Kuc, J.C.S. Chem. Comm., 1974, 542; N. G. Connelly, P. T. Draggett, M. Green, and T. A. Kuc, J.C.S. Dalton, 1977, 70.
${ }^{2}$ B. L. Haymore and J. A. Ibers, Inorg. Chem., 1975, 14, 3060.
${ }^{3}$ A. G. Modinos and P. Woodward, J.C.S. Dalton, 1974, 2065.
${ }^{4}$ A. G. Modinos, DRSYN, a Fortran program for data analysis.

Table 1
Final co-ordinates (fractional: $\times 10^{5}, \mathrm{Rh}$ and $\mathrm{P} ; \times 10^{4}$, $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and F) of the non-hydrogen atoms

Atom	x	y	z
Rh	22 184(4)*	$11439(2)$	8 698(5)
N(1)	3 278(5)	788(3)	$1859(5)$
C(1)	3931 (6)	662(3)	2441 (8)
C(11)	$4794(7)$	505(5)	3 181(11)
$\mathrm{N}(2)$	$1140(5)$	$1516(3)$	-19(6)
$\mathrm{C}(2)$	467(6)	$1692(3)$	-470(7)
$\mathrm{C}(21)$	-416(7)	$1906(4)$	-1 044(11)
$\mathrm{N}(3)$	3 372(5)	$1633(3)$	235(6)
C(3)	3837 (7)	$1859(4)$	-268(9)
C(31)	4 417(11)	$2146(7)$	-987(14)
N(4)	$1243(5)$	683(3)	$1402(6)$
$\mathrm{O}(4)$	477(5)	67.5(3)	910(6)
$\mathrm{P}(1)$	$20393(14)$	$16818(7)$	$24169(16)$
C(101)	$3012(6)$	$1682(3)$	$3575(6)$
C(102)	3950 (6)	$1746(4)$	3 337(7)
C(103)	$4712(7)$	$1792(4)$	4 206(9)
C(104)	4520 (8)	$1807(5)$	5323 (9)
C(105)	$3584(8)$	$1756(5)$	5 558(8)
C(106)	$2838(7)$	$1698(4)$	4 710(7)
C(111)	$1915(6)$	2331 (3)	2109 (7)
C(112)	$2082(6)$	$2529(3)$	1074 (7)
C(113)	$2102(7)$	$3031(3)$	937(8)
C(114)	1946 (7)	3 333(3)	1809 (9)
C(115)	1750 (7)	$3139(3)$	$2833(9)$
C(116)	1756 (6)	$2642(3)$	$2995(7)$
C(121)	980(6)	$1487(3)$	3006 (7)
C(122)	104(6)	$1728(4)$	$2693(8)$
C(123)	$-723(7)$	$1519(5)$	$3011(10)$
C(124)	-708(8)	$1086(5)$	3618 (9)
C(125)	$161(8)$	850(4)	$3911(9)$
C(126)	$1012(7)$	$1059(4)$	$3622(7)$
$P(2)$	23 872(14)	$6094(7)$	-6919(15)
C(201)	1390 (5)	700(3)	$-1799(6)$
C(202)	$1345(6)$	$1127(4)$	-2447 (7)
C(203)	531 (7)	$1225(4)$	-3202(8)
C(204)	-251(8)	893(4)	-3 318(9)
C(205)	-202(6)	479(4)	$-2671(8)$
$\mathrm{C}(206)$	623 (6)	381 (4)	-1913(7)
C(211)	3 504(6)	677(3)	- $1298(7)$
C(212)	$4365{ }^{(7)}$	656(4)	-551 (7)
$\mathrm{C}(213)$	$5253(7)$	661 (4)	-967 (9)
C(214)	$5283(6)$	703(4)	-2112(8)
C(215)	4 442(7)	738(4)	-2860(8)
C(216)	3543 (6)	724(3)	-2468(7)
C(221)	2374 (6)	-42(3)	-422(7)
$\mathrm{C}(222)$	2 201(6)	-244(3)	617(6)
C(223)	$2145(6)$	-746(3)	737(8)
C(224)	2 266(7)	- $1052(3)$	-166(8)
C(225)	2 467(7)	--847(3)	$-1184(8)$
C(226)	$2512(7)$	-349 (3)	-1321(7)
$\mathrm{P}(3)$	15 607(21)	$27034(11)$	68 585(27)
F(31)	$1805(8)$	$3117(4)$	$7779(8)$
F(32)	$1306(8)$	$2303(4)$	5 906(10)
F (33)	521 (9)	2 637(6)	7 120(14)
F(34)	$2555(11)$	$2806(6)$	$6462(17)$
$\mathrm{F}(35)$	$1929(20)$	2316 (6)	7 696(18)
$\mathrm{F}(36)$	$1228(15)$	$3105(6)$	5 918(14)
$\mathrm{P}(4)$	72 007(17)	2342 (10)	52 707(19)
F (41)	8 272(5)	85(3)	$5123(7)$
F (42)	$6129(4)$	395(3)	5421 (5)
$\mathrm{F}(43)$	7 436(5)	$236(4)$	6 616(5)
F(44)	$6927(5)$	237(4)	3 934(5)
F (45)	$7507(6)$	786(3)	5 249(7)
F(46)	6890 (6)	-323(3)	5 304(8)

* Estimated standard deviations are given in parentheses throughout this paper.
refined, were positionally updated every fourth cycle. No attempt was made to locate the nine methyl hydrogens.

In the final stages of refinement the criterion by which a

* All the Appendices may be recovered from Supplementary Publication No. SUP 22135 (45 pp .). For details see Notices to Authors No. 7, J.C.S. Dalton, 1976, Index issue.
reflection is deemed ' observed.' was slightly modified such that all data with $I>2.5 \sigma(I)$ were used (7120), together with those 1382 reflections with $2.5 \sigma \geqslant I \geqslant 1.0 \sigma$ that satisfied the requirement $\left|F_{o}\right|>F_{\mathrm{c}}$. This procedure has the effect of increasing the data: variable ratio (and hence decreasing the error in atomic parameters) but avoids the contribution from erroneously measured reflections. Refinement continued until no significant change occurred in any variable. (All the refined atoms were allowed anisotropic thermal motion.) Final residuals of $R 0.075$ and $R^{\prime} 0.095$ were recorded at a data : variable ratio better than 14.6 : 1. The ultimate difference Fourier ($0.29 \AA$ resolution) revealed a maximum of $c a .1 .14 \mathrm{e}^{\AA} \AA^{-3}$ at $c a .0 .0696,0.3023$, 0.6617.

Atomic-scattering factors for neutral atoms were taken from refs. 5 (Rh and F), 6 ($\mathrm{P}, \mathrm{N}, \mathrm{O}$, and C), and $7(\mathrm{H})$, with all the non- H sets corrected for both components of anomalous dispersion. ${ }^{8}$ Table 1 lists the final atomic co-ordinates for refined atoms. Appendices A, B, and C respectively contain the anisotropic thermal parameters, calculated hydrogen-atom positions, and a comparison of $\left|F_{o}\right|$ and F_{c}.* We are grateful to the University of London Computer Centre for use of the ' X-RAY '72' crystallographic package ${ }^{9}$ with which all the calculations were performed.

DISCUSSION

The asymmetric fraction of the unit cell contains one $\left[\mathrm{Rh}(\mathrm{NCMe})_{3}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ and two independent $\left[\mathrm{PF}_{6}\right]^{-}$ ions, none of which has crystallographically imposed symmetry. Interatomic distances (uncorrected for thermal effects) and interbond angles are presented in Tables 2 and 3 respectively.

The $\left[\mathrm{Rh}(\mathrm{NCMe})_{3}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ Dication.-The central portion of this ion and atomic-numbering scheme adopted are shown in Figure 1. The crystallographic analysis demonstrates that the cation carries a third acetonitrile ligand and is not the five-co-ordinate species (2) described by Connelly et al. ${ }^{1}$ The overall geometry is octahedral with two pairs of like ligands mutually trans. Two extra electrons are available to the metal atom by virtue of the additional cyanide ligand, thereby favouring nitrosyl co-ordination as the one-electron donor $[\mathrm{NO}]^{-}$; the metal is thus in the formal oxidation state (III).

As far as we are aware there are no previously reported structural results on six-co-ordinate rhodium(III) nitrosyls. The $\mathrm{Rh}-\mathrm{N}(4)$ distance $[2.026(8) \AA]$, is, however, a simple extension of the corresponding values of $1.818(4) \AA$ in the four-co-ordinate species ${ }^{10,} \dagger\left[\mathrm{Rh}(\mathrm{NO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $1.905(15) \AA$ in the five-co-ordinate species ${ }^{11}[\mathrm{Rh}\{\mathrm{PhP}-$
\dagger We are aware of the difficulty in assigning a formal oxidation state to the metal in this structure [$\mathrm{N}-\mathrm{O}$ 1.158(6) $\AA, \mathrm{Rh}^{2} \mathrm{~N}-\mathrm{O}$ $\left.158.9(4)^{\circ}\right]$ and the associated implications for atomic radius.
${ }^{5}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }_{7}^{6}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{7}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }^{8}$ ' International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
${ }^{9}$ Technical Report TR-192, the Computer Science Centre, University of Maryland, June 1972.
${ }^{10}$ J. A. Kaduk and J. A. Ibers, Inorg. Chem., 1975, 14, 3070.
${ }^{11}$ T. E. Nappier, jun., D. W. Meek, R. M. Kirchner, and J. A. Ibers, J. Amer. Chem. Soc., 1973, 95, 4194.
$\left.\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right\} \mathrm{Cl}(\mathrm{NO})\right\rfloor^{+}$or $1.912(10) \AA$ in $\left\{\mathrm{RhCl}_{2}-\right.$ $\left.(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{12}$ The $\mathrm{N}(4)-\mathrm{O}(4)$ separation $[1.159(10) \AA]$ and $\mathrm{Rh}^{-}-\mathrm{N}-\mathrm{O}$ angle $\left[118.4(6)^{\circ}\right.$], are both entirely consistent with the formal description $[\mathrm{NO}]^{-} .{ }^{13}$ The plane

Table 2 Interatomic distances (\AA)			
$\mathrm{Rh}-\mathrm{N}(1)$	$2.030(7)$	$\mathrm{C}(101)-\mathrm{C}(102)$	$1.394(12)$
$\mathrm{Rh}-\mathrm{N}(2)$	2.014(7)	$\mathrm{C}(102)-\mathrm{C}(103)$	1.398(13)
$\mathrm{Rh}-\mathrm{N}(3)$	2.308(8)	$\mathrm{C}(103)-\mathrm{C}(104)$	$1.392(16)$
$\mathrm{Rh}-\mathrm{N}(4)$	2.026 (8)	$\mathrm{C}(104)-\mathrm{C}(105)$	1.387(17)
$\mathrm{Rh}-\mathrm{P}(1)$	$2.402(2)$	$\mathrm{C}(105)-\mathrm{C}(106)$	1.370 (13)
$\mathrm{Rh}-\mathrm{P}(2)$	2.407(2)	$\mathrm{C}(106)-\mathrm{C}(101)$	$1.406(12)$
		$\mathrm{C}(111)-\mathrm{C}(112)$	$1.394(13)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.132(11)$	$\mathrm{C}(112)-\mathrm{C}(113)$	1.393 (13)
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.470(14)$	$\mathrm{C}(113)-\mathrm{C}(114)$	$1.369(14)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.136(11)$	$\mathrm{C}(114)-\mathrm{C}(115)$	1.390 (15)
$\mathrm{C}(2)-\mathrm{C}(21)$	1.463 (13)	$\mathrm{C}(115)-\mathrm{C}(116)$	1.380(12)
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.127(13)$	$\mathrm{C}(116)-\mathrm{C}(111)$	1.399 (12)
$\mathrm{C}(3)-\mathrm{C}(31)$	$1.483(20)$	$\mathrm{C}(121)-\mathrm{C}(122)$	$1.406(12)$
$\mathrm{N}(4)-\mathrm{O}(4)$	$1.159(10)$	$\mathrm{C}(122)-\mathrm{C}(123)$	1.391 (15)
		$\mathrm{C}(123)-\mathrm{C}(124)$	1.393 (18)
$\mathrm{P}(1)-\mathrm{C}(101)$	1.814(8)	$\mathrm{C}(124)-\mathrm{C}(125)$	1.387(16)
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.827(9)$	$\mathrm{C}(125)-\mathrm{C}(126)$	1.407(15)
$\mathrm{P}(1)-\mathrm{C}(121)$	$1.807(9)$	$\mathrm{C}(126)-\mathrm{C}(121)$	$1.386(13)$
$\mathrm{P}(2)-\mathrm{C}(201)$	1.816 (7)	$\mathrm{C}(201)-\mathrm{C}(202)$	$1.403(12)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.819(9)$	$\mathrm{C}(202)-\mathrm{C}(203)$	$1.388(12)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.820(9)$	$\mathrm{C}(203)-\mathrm{C}(204)$	$1.422(16)$
		$\mathrm{C}(204)-\mathrm{C}(205)$	1.373 (16)
$\mathrm{P}(3)-\mathrm{F}(31)$	1.588(10)	$\mathrm{C}(205)-\mathrm{C}(206)$	$1.402(12)$
$\mathrm{P}(3)-\mathrm{F}(32)$	1.589(11)	$\mathrm{C}(206)-\mathrm{C}(201)$	$1.384(12)$
$\mathrm{P}(3)-\mathrm{F}(33)$	$1.543(14)$	$\mathrm{C}(211)-\mathrm{C}(212)$	1.410 (11)
$\mathrm{P}(3)-\mathrm{F}(34)$	$1.556(17)$	$\mathrm{C}(212)-\mathrm{C}(213)$	1.400(14)
$\mathrm{P}(3)-\mathrm{F}(35)$	$1.506(19)$	$\mathrm{C}(213)-\mathrm{C}(214)$	$1.376(14)$
$\mathrm{P}(3)-\mathrm{F}(36)$	$1.600(17)$	$\mathrm{C}(214)-\mathrm{C}(215)$	$1.391(12)$
		$\mathrm{C}(215)-\mathrm{C}(216)$	$1.403(14)$
$\mathrm{P}(4)-\mathrm{F}(41)$	1.592(7)	$\mathrm{C}(216)-\mathrm{C}(211)$	$1.407(12)$
$\mathrm{P}(4)-\mathrm{F}(42)$	$1.601(7)$	$\mathrm{C}(221)-\mathrm{C}(222)$	$1.405(11)$
$\mathrm{P}(4)-\mathrm{F}(43)$	$1.596(7)$	$\mathrm{C}(222)-\mathrm{C}(223)$	1.393 (11)
$\mathrm{P}(4)-\mathrm{F}(44)$	$1.690(7)$	$\mathrm{C}(223)-\mathrm{C}(224)$	$1.394(13)$
$\mathrm{P}(4)-\mathrm{F}(45)$	1.578(8)	$\mathrm{C}(224)-\mathrm{C}(225)$	$1.399(14)$
$\mathrm{P}(4)-\mathrm{F}(46)$	1.597(8)	$\mathrm{C}(225)-\mathrm{C}(226)$	$1.384(13)$
		$\mathrm{C}(226)-\mathrm{C}(221)$	1.398(12)
	$2^{N(1)}$		

Figure 1 Perspective view of the $\left[\mathrm{Rh}(\mathrm{NCMe})_{3}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ cation. Phenyl rings are not shown for clarity. Boundary ellipses represent 50% electron probability
defined by the atomic sequence $\operatorname{RhN}(4) \mathrm{O}(4)$ bears no special relation to the metal co-ordination geometry, being twisted $c a$. 15.7° from $\mathrm{N}(4) \mathrm{RhN}(2)$ towards $\mathrm{N}(4) \mathrm{RhP}(2)$.

12 S. Z. Goldberg, C. Kubiak, C. D. Meyer, and R. Eisenberg, Inorg. Chem., 1975, 14, 1650.

Only one previous example of a crystallographically studied acetonitrile complex of rhodium is known. ${ }^{14}$

Table 3
Interbond angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(2)$	176.3(3)	$\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(202)$	$119.5(6)$		
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(3)$	88.7(3)	$\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(206)$	$120.3(6)$		
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(4)$	$89.5(3)$	$\mathrm{C}(202)-\mathrm{C}(201)-\mathrm{C}(206)$	$119.8(7)$		
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{P}(1)$	89.6(2)	$\mathrm{C}(201)-\mathrm{C}(202)-\mathrm{C}(203)$	$19.6(9)$		
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{P}(2)$	91.0(2)	$\mathrm{C}(202)-\mathrm{C}(203)-\mathrm{C}(204)$	$120.2(10)$		
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{N}(3)$	$92.5(3)$	$\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)$	$119.6(9)$		
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{N}(4)$	$89.3(3)$	$\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{C}(206)$	$120.0(9)$		
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{P}(1)$	$86.9(2)$	$\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{C}(201)$	$120.8(9)$		
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{P}(2)$	92.6(2)				
$\mathrm{N}(3)-\mathrm{Rh}-\mathrm{N}(4)$	177.0(3)	$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	$117.4(6)$		
$\mathrm{N}(3)-\mathrm{Rh}-\mathrm{P}(1)$	$92.2(2)$	$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	$123.2(6)$		
$\mathrm{N}(3)-\mathrm{Rh}-\mathrm{P}(2)$	87.7(2)	$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{C}(216)$	$119.4(8)$		
$\mathrm{N}(4)-\mathrm{Rh}-\mathrm{P}(1)$	$90.2(2)$	$\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{C}(213)$	$120.5(8)$		
$\mathrm{N}(4)-\mathrm{Rh}-\mathrm{P}(2)$	89.8(2)	$\mathrm{C}(212)-\mathrm{C}(213)-\mathrm{C}(214)$	$119.6(8)$		
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	$179.46(7)$	$\begin{aligned} & \mathrm{C}(213)-\mathrm{C}(214)-\mathrm{C}(215) \\ & \mathrm{C}(214)-\mathrm{C}(215)-\mathrm{C}(216) \end{aligned}$	$\begin{aligned} & 120.7(9) \\ & 120.9(9) \end{aligned}$		
$\mathrm{Rh}-\mathrm{N}(1)-\mathrm{C}(1)$	168.8(7)	$\mathrm{C}(215)-\mathrm{C}(216)-\mathrm{C}(211)$	$118.9(8)$		
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	178.7(10)				
$\mathrm{Rh}-\mathrm{N}(2)-\mathrm{C}(2)$	172.5(7)	$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$	123.5(6)		
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(21)$	178.4(10)	$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$	$117.0(6)$		
$\mathrm{Rh}-\mathrm{N}(3)-\mathrm{C}(3)$	$167.0(7)$	$\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(226)$	$119.5(8)$		
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(31)$	$176.8(11)$	$\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$	$120.1(8)$		
$\mathrm{Rh}-\mathrm{N}(4)-\mathrm{O}(4)$	$118.4(6)$	$\begin{aligned} & \mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224) \\ & \mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225) \end{aligned}$	$120.4(8)$		
			$\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226) 121.3(9)$		
$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(101)$	116.2(3)				
$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(111)$	$117.7(3)$	$\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{C}(221) 119.7(8)$			
$\mathrm{Rh}-\mathrm{P}(1)-\mathrm{C}(121)$	106.7(3)				
$\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{C}(111)$	101.4(4)	$\mathrm{F}(31)-\mathrm{P}(3)-\mathrm{F}(32)$	178.1(6)		
$C(101)-P(1)-C(121)$	106.4(4)	$\mathrm{F}(31)-\mathrm{P}(3)-\mathrm{F}(33)$	94.1 (7)		
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	107.8(4)	$\begin{aligned} & \mathrm{F}(31)-\mathrm{P}(3)-\mathrm{F}(34) \\ & \mathrm{F}(31)-\mathrm{P}(3)-\mathrm{F}(35) \end{aligned}$	$87.5(8)$		
			$91.4(8)$		
Rh-P(2)-C(201)	109.6(3)	$\mathrm{F}(31)-\mathrm{P}(3)-\mathrm{F}(35)$	$90.4(7)$		
$\mathrm{Rh}-\mathrm{P}(2)-\mathrm{C}(211)$	$114.8(3)$	$\mathrm{F}(32)-\mathrm{P}(3)-\mathrm{F}(33)$	86.0 (7)		
Rh-P(2)-C(221)	$117.4(3)$	$\mathrm{F}(32)-\mathrm{P}(3)-\mathrm{F}(34)$	92.2(8)		
$\mathrm{C}(201)-\mathrm{P}(2)-\mathrm{C}(211)$	108.8(4)	$\mathrm{F}(32)-\mathrm{P}(3)-\mathrm{F}(35)$	$90.5(8)$		
$\mathrm{C}(201)-\mathrm{P}(2)-\mathrm{C}(221)$	$103.9(4)$	$\mathrm{F}(32)-\mathrm{P}(3)-\mathrm{F}(36)$	$87.7(7)$		
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	101.6(4)	$\begin{aligned} & \mathrm{F}(33)-\mathrm{P}(3)-\mathrm{F}(34) \\ & \mathrm{F}(33)-\mathrm{P}(3)-\mathrm{F}(35) \end{aligned}$	172.8(9)		
			$92.1(12)$		
$\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(102)$	119.1 (6)	$\begin{aligned} & \mathrm{F}(33)-\mathrm{P}(3)-\mathrm{F}(35) \\ & \mathrm{F}(33)-\mathrm{P}(3)-\mathrm{F}(36) \end{aligned}$	$91.3(10)$		
$\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(106)$	121.7(7)	$\mathrm{F}(33)-\mathrm{P}(3)-\mathrm{F}(36)$ $\mathrm{F}(34)-\mathrm{P}(3)-\mathrm{F}(35)$	$94.8(13)$		
$\mathrm{C}(102)-\mathrm{C}(101)-\mathrm{C}(106)$	$118.4(7)$	$\mathrm{F}(34)-\mathrm{P}(3)-\mathrm{F}(36)$	$81.7(10)$		
$\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(103)$	$121.1(8)$		176.0(13)		
$\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$	$119.2(9)$	$\mathrm{F}(35)-\mathrm{P}(3)-\mathrm{F}(36)$			
$\mathrm{C}(103)-\mathrm{C}(104)-\mathrm{C}(105)$	$119.6(9)$	$F(41)-P(4)-F(42)$	178.8(4)		
$\mathrm{C}(104)-\mathrm{C}(105)-\mathrm{C}(106)$	$121.3(10)$	$\mathrm{F}(41)-\mathrm{P}(4)-\mathrm{F}(43)$	$91.9(4)$		
$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{C}(101)$	$120.3(9)$	$\begin{aligned} & \mathrm{F}(41)-\mathrm{P}(4)-\mathrm{F}(44) \\ & \mathrm{F}(41)-\mathrm{P}(4)-\mathrm{F}(45) \end{aligned}$	90.1 (4)		
			$88.9(4)$		
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$	122.5(7)	$\mathrm{F}(41)-\mathrm{P}(4)-\mathrm{F}(45)$ $\mathrm{F}(41)-\mathrm{P}(4)-\mathrm{F}(46)$	$91.2(5)$		
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$	$117.8(6)$	$F(42)-P(4)-F(43)$	88.0 (4)		
$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(116)$	$119.3(8)$	$\mathrm{F}(42)-\mathrm{P}(4)-\mathrm{F}(44)$	$90.0(4)$		
$\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$	$120.0(8)$	$\mathrm{F}(42)-\mathrm{P}(4)-\mathrm{F}(45)$	$89.9(4)$		
$\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)$	$120.2(9)$	$\mathrm{F}(42)-\mathrm{P}(4)-\mathrm{F}(46)$	$90.0(4)$		
$\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$	$120.2(8)$	$\mathrm{F}(43)-\mathrm{P}(4)-\mathrm{F}(44)$	178.0(4)		
$\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$	$120.3(9)$	$\mathrm{F}(43)-\mathrm{P}(4)-\mathrm{F}(45)$	$89.6(5)$		
$\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(111)$	$119.9(9)$	$\begin{aligned} & F(43)-P(4)-F(46) \\ & F(44)-P(4)-F(45) \end{aligned}$	$\begin{aligned} & 90.0(5) \\ & 90.7(5) \end{aligned}$		
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$	119.6(7)	$\mathrm{F}(44)-\mathrm{P}(4)-\mathrm{F}(46)$$\mathrm{F}(45)-\mathrm{P}(4)-\mathrm{F}(46)$	$\begin{array}{r} 89.8(5) \\ 179.5(5) \end{array}$		
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$	$119.0(7)$				
$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{C}(126)$	$120.7(8)$		$179.5(5)$		
$\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(123)$	$117.8(9)$				
$\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$	$122.4(10)$				
$\mathrm{C}(123)-\mathrm{C}(124)-\mathrm{C}(125)$	$119.0(10)$				
$\mathrm{C}(124)-\mathrm{C}(125)-\mathrm{C}(126)$	$119.8(10)$				
$\mathrm{C}(125)-\mathrm{C}(126)-\mathrm{C}(121)$	$120.3(9)$				

The $\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}(\mathrm{NCMe})_{2}\right]^{+}$cation has a trigonal-bipyramidal (precise $D_{3 h}$) geometry with the cyanide ligands along the C_{3} axis. $\mathrm{Rh}^{-\mathrm{N}}$ for this five-co-ordinate rhodium(I)
${ }^{13}$ B. A. Frenz and J. A. Ibers, M.T.P. Internat. Rev. Sci., Phys. Chem., 1972, 11, 33.

14 G. D. Piero, G. Perego, and M. Cesari, Cryst. Struct. Comm., 1974, 3, 15.
complex is $1.98(2) \AA$. Corresponding distances of $2.030(7)$ and $2.014(7) \AA$ are determined for the mutually trans acetonitrile ligands in the present cation, whilst $\mathrm{Rh}-\mathrm{N}(3)$, trans to the nitrosyl function, is $2.308(8) \AA$. Interestingly, the $\mathrm{N}-\mathrm{C}$ separations follow the reverse sequence $[$ i.e. $\mathrm{N}(3)-\mathrm{C}(3)$ is shortest $]$ although the differences here are clearly not significant. Nevertheless, the unique acetonitrile ligand is undoubtedly much more weakly bonded to rhodium,* and is easily removed ${ }^{1}$ to generate the trans-square-pyramidal ion (2) in which the nitrosyl group occupies the apical position. The unambiguous determination of the nitrosyl bonding mode in (2) must await a further crystallographic analysis. It
groups are demonstrated in Appendix D. Figure 2(i) and $2(i i)$ represents individual projections of the triphenylphosphine groups in roughly similar directions. In common with many structural determinations ${ }^{20}$ of co-ordinated PPh_{3} molecules, we find the plane of one aryl ring essentially contains the $\mathrm{Rh}-\mathrm{P}$ vector, one is twisted $c a .90^{\circ}$ about the $\mathrm{P}-\mathrm{C}$ bond with respect to this, and the third is intermediate. In this way we may pair ring $\mathrm{C}(111)-\mathrm{C}(116)$ with $\mathrm{C}(221)$ $\mathrm{C}(226), \quad \mathrm{C}(\mathbf{1 2 1})-\mathrm{C}(\mathbf{1 2 6})$ with $\mathrm{C}(201)-\mathrm{C}(206)$, and $\mathrm{C}(101)-\mathrm{C}(106)$ with $\mathrm{C}(211)-\mathrm{C}(216)$. Corresponding twist angles \ddagger are: $11.2,4.8 ; 81.9,72.0$; and 51.7 , 52.1°. Furthermore, the chirality of both PhPPh_{3}

(i)

(ii)

Figure 2 Conformations of the phenyl rings, as seen in projections along the respective $\mathbf{P}-\mathrm{Rh}$ bonds
is noteworthy, however, that in the present cation, even though the trans acetonitrile is so loosely bound, no opening of the $\mathrm{Rh}-\mathrm{N}-\mathrm{O}$ angle occurs, suggesting consistent co-ordination (as [NO^{-}) for (2), in agreement with the available spectroscopic data.
The Rh-P distances [2.402(2) and $2.407(2) \AA$] may again be viewed as a further extension of typical four-co-ordinate $\mathrm{Rh}^{\text {III-P }}{ }^{10}[2.354(1) \AA]$, and five-co-ordinate $\mathrm{Rh}^{\text {III }} \mathrm{P}{ }^{11,12,16,17}$ (weighted mean $2.363 \AA$) separations, and bear direct comparison with other six-co-ordinate $\mathrm{Rh}^{\text {III }}-\mathrm{P}$ distances ${ }^{18,19}$ (mean $2.394 \AA$).
$\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ lengths and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are unexceptional, averaging $1.817(7) \dagger$ and $1.394(12) \AA$ and $120.0(9)^{\circ}$ respectively. The planarities of the phenyl

* The molecular structure therefore provides another example of the significant trans influence of $[\mathrm{NO}]^{-}$in octahedral d^{6} complexes. ${ }^{15}$
\dagger The estimated standard deviation of the mean of N similar types is given by the expression $\sigma^{2}=\left[\sum_{i=1}^{i=N}\left(\chi_{i}-\chi\right)^{2}\right] /(N-1)$ where $\bar{\chi}_{i}$ is the i th and $\bar{\chi}$ the mean value.
\ddagger The twist angle is defined here as the acute dihedral angle between the RhPC and PCC planes.
moieties is the same for any one molecule, although equal numbers of both type occur in the (centrosymmetric) unit cell.

Having paired corresponding phenyl groups, the variation in $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ angles may be rationalised, since, for the rings with small twist angle, the relatively short contact to the ortho-hydrogen atom nearest rhodium $[\mathrm{Rh} \cdots \mathrm{H}(112) 3.25, \mathrm{Rh} \cdots \mathrm{H}(222) 3.26 \AA]$ causes $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ to widen. The effect is also shared by an increase in $\mathrm{P}-\mathrm{C}-\mathrm{C}(112,222)$ over $\mathrm{P}-\mathrm{C}-\mathrm{C}(116,226)$.

There is no evidence of the quasi-graphitic packing of pairs of phenyl rings (either generally or specifically

[^1]

Figure 3 The $\left[\mathrm{PF}_{6}\right]$ - anions. The thermal ellipsoids enclose $\mathbf{5 0} \%$ electron probability

Figure 4 Packing diagram as seen along the c axis, looking towards the origin. Hydrogen atoms of the phenyl rings and a full complement of symmetry elements are omitted for the sake of clarity
across a symmetry centre) often observed in multi-ring structures. ${ }^{21}$
The $\left[\mathrm{PF}_{6}\right]-$ Anions and Crystal Packing.-Figure 3(i) ${ }^{21}$ V. G. Albano, P. L. Bellon, G. Ciani, and M. Manassero, J.C.S. Dalton, 1972, 171 and refs. therein.
and $\mathbf{3}(i i)$ shows the two crystallographically independent hexafluorophosphate anions drawn to a common scale,

Table 4
Root-mean-square displacements ($\AA \times 10^{4}$) along the principle ellipsoidal axes for the hexafluorophosphate anions

	Axis		
Atom	1	2	3
\mathbf{P} (3)	1653	1841	2536
$\mathrm{F}(31)$	2036	2294	4026
$\mathrm{F}(32)$	1746	2533	4143
F(33)	1978	2557	5689
F(34)	2193	2696	5986
F(35)	1886	3225	7334
$\mathrm{F}(36)$	2459	3122	5685
$\mathrm{P}(4)$	1458	1698	1987
F(41)	1684	2487	2795
F (42)	1737	2025	2564
F (43)	1608	2316	3470
F(44)	1656	2312	3176
F (45)	1875	2306	3111
F(46)	1733	2730	3035

Table 5
Non-bonded H • . F F contacts (\AA)

Atom A ${ }^{\text {a }}$	Atom B	Position B	Distance
F(32) ${ }^{\text {b }}$	$\mathrm{H}(106){ }^{\boldsymbol{c}, \boldsymbol{d}}$	x, y, z	2.51
$\mathrm{F}(32)$	$\mathrm{H}(203)$	$x, y, \mathbf{1}+z$	2.50
F(34)	$\mathrm{H}(123)$	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$	2.49
$\mathrm{F}(43)$	$\mathrm{H}(205)$	$1+x, y, 1+z$	2.56
F(43)	$\mathrm{H}(222)$	$1-x,-y, 1-z$	2.58
F (44)	$\mathrm{H}(226)$	$1-x,-y,-z$	2.39
F (45)	$\mathrm{H}(204)$	$1+x, y, 1+z$	2.48
F (45)	$\mathrm{H}(124)$	$1+x, y, z$	2.54
F (45)	H(114)	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$	2.45
F(33)	$\mathrm{C}(21)^{e}$	$x, y, 1+z$	3.360(21)
$\mathrm{F}(36)$	$\mathrm{C}(31)$	$x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$	$3.262(23)$
$\mathrm{F}(42)$	C(11)	x, y, z	3.077(13)
$\mathrm{F}(42)$	$\mathrm{C}(11)$	1-x, $-y, 1-z$	$3.339(15)$
$\mathrm{F}(44)$	$\mathrm{C}(11)$	x, y, z	3.107(13)
F(46)	$\mathrm{C}(11)$	$\mathbf{1}-x,-y, \mathbf{l}-z$	3.193 (15)

${ }^{a}$ At x, y, z (Table 1). ${ }^{b, c}$ van der Waals radii taken as $\mathbf{1 . 3 5}$ and $1.20 \AA$ respectively. ${ }^{d}$ Hydrogen atoms numbered according to their parent carbon. e van der Waals radius of methyl group estimated as $2.0 \AA$.
and demonstrates the fluorine-numbering scheme. The positions of these ions relative to each other and to the cation may be seen in Figure 4, the contents of one unit cell as viewed along the shortest crystallographic axis, looking towards the origin.
The striking difference in thermal activity of the two anions, clearly visible in Figures 3 and quantified in Table 4 as root-mean-square amplitudes (\AA) along the major ellipsoidal axes, may be traced to their differing degrees of cation-anion $\mathrm{H} \cdots \mathrm{F}$ interaction (Table 5). Overall there are twice as many $\mathrm{H} \cdots \mathrm{FP}(4)$ short contacts as $\mathrm{H} \cdots \mathrm{FP}(3)$ ones. Furthermore, only one
$\mathrm{H} \cdots \mathrm{FP}(3)$ approach, between $\mathrm{F}(36)$ at x, y, z and $\mathrm{C}(31)$ at $x-\frac{1}{2}, \frac{1}{2}-y ; \frac{1}{2}+z$, is of possible severity. The comparatively weak crystal forces experienced by the $\mathrm{P}(3) \mathrm{F}_{6}$ anion duly manifest themselves in a greater uncertainty in positional parameters and hence an increased spread and error in the bond lengths and angles determined, in spite of the fact that diffractometer data were recorded at low temperature.

We thank Dr. P. T. Draggett for crystals, and the S.R.C. for support (to B. A. K.).
[7/784 Received, 9th May, 1977]

[^0]: \dagger No reprints available.
 \ddagger Present address: Laboratorium für anorganische Chemie, E. $\stackrel{+}{T}$. H., 8006 Zürich, Universitätstrasse 6, Switzerland.
 \S The isotropic temperature factor is defined as $\exp \left[-8 \pi^{2} U\right.$ $\left.\left(\sin ^{2} \theta\right) / \lambda^{2}\right]$.

[^1]: ${ }^{15}$ D. A. Snyder and D. L. Weaver, Inovg. Chem., 1970, 9, 2760 and refs. therein.
 ${ }^{16}$ P. G. H. Troughton and A. C. Skapski, Chem. Comm., 1968, 575.

 17 A. P. Gaughan, jun., B. L. Haymore, J. A. Ibers, W. H. Meyers, T. E. Nappier, jun., and D. W. Meek, J. Amer. Chem. Soc., 1973, 95, 6859.
 ${ }_{18}$ F. H. Allen, G. Chang, K. K. Cheung, T. F. Lai, L. M. Lee, and A. Pidcock, Chem. Comm., 1970, 1297.
 ${ }^{19}$ A. C. Skapski and F. A. Stephens, J.C.S. Dalton, 1973, 1789.
 Only the mutually trans phosphines are considered
 ${ }^{20}$ V. G. Albano, P. Bellon, and M. Sansoni, J. Chem. Soc. (A), 1971, 2420.

